IECM Overview and Update

Edward S. Rubin Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania

Presentation to the

NETL CO₂ Capture Technology Meeting Pittsburgh, Pennsylvania

July 11, 2012

Company Background Slide:

The Carnegie Mellon University campus

Project Overview

- *Title:* Integrated Environmental Control Model (IECM)
- *DOE Funding* (*via URS*) : \$245,300
- *Performance Dates:* Nov 15, 2011 Nov 14, 2012

 Also a related project: "The Role of Simulation and Modeling in Accelerating CO₂ Capture Technology"

The Integrated Environmental Control Model (IECM)

- A desktop/laptop computer simulation model developed for DOE/NETL
- Provides systematic estimates of <u>performance</u>, <u>emissions</u>, <u>costs</u> and <u>uncertainties</u> for preliminary design of:
 - PC, IGCC and NGCC plants
 - All flue/fuel gas treatment systems
 - CO₂ capture and storage options (pre- and post-combustion, oxycombustion; transport, storage)
- Free and publicly available at: <u>www.iecm-online.com</u>

IECM Modeling Approach

- Systems Analysis Approach
- Process Performance Models
- Engineering Economic Models
- Advanced Software Capabilities
 - User-friendly graphical interface
 - Probabilistic analysis capability
 - Versatile input/output features

IECM Software Package

IECM Technologies for PC Plants

(excluding CO₂ capture, transport and sequestration)

Boiler/Turbine Types

- Subcritical
- Supercritical
- Ultra-supercritical

Furnace Firing Types

- Tangential
- Wall
- Cyclone

Furnace NO_x Controls

- LNB
- SNCR
- SNCR + LNB
- Gas reburn

Flue Gas NO_x Removal • Hot-side SCR

Mercury Removal

• Carbon/sorbent injection

Particulate Removal

- Cold-side ESP
- Fabric filter
 - Reverse Air, Pulse Jet

SO₂ Removal

- Wet limestone
 - Conventional, Forced oxidation
 - Additives
- Wet lime
- Lime spray dryer

Solids Management

- Ash pond, Landfill, Co-mixing
- Byproducts (for export)

Cooling and Wastewater Systems

- Once-through cooling
- Wet cooling tower
- Dry cooling tower
- Chemical treatment
- Mechanical treatment

IECM Technologies for IGCC Plants

(excluding CO₂ capture, transport and sequestration)

- Air Separation Unit
- Cryogenic

Slurry Preparation

Coal Pretreatment

Gasification

- Slurry-feed gasifier (GE-Q)
- Dry-feed gasifier (Shell)

Syngas Cooling and Particulate Removal System

Mercury Removal • Activated carbon

H₂S Removal System

- Selexol
- Sulfinol

Sulfur Recovery System

- Claus Plant
- Beavon-Stretford Unit

Gas Turbine - GE 7FA - GE 7FB

Heat Recovery Steam Generator

Steam Turbine

Boiler Feedwater System

Process Condensate Treatment

Auxiliary Equipment

Cooling Water System

- Once-through
- Wet cooling tower
- Air cooled condenser

IECM Technologies for CCS

- <u>CO₂ Capture Options</u>
 - Pre-Combustion (IGCC):
 - Water gas shift + Selexol
 - Chemical looping
 - Oxy-Combustion (PC)
 - Post-Combustion (PC, NGCC):
 - Amine systems (MEA, FG+)
 - Chilled ammonia
 - Membrane systems
 - Chemical looping
 - Auxiliary NG boiler or power plant (optional)
- <u>CO₂ Transport Options</u>
 - Pipelines (six U.S. regions)

<u>CO₂ Sequestration Options</u>

- Geologic: Deep Saline or Other Formations
- Geologic: Enhanced Oil Recovery (EOR)

Process Performance Models

- Detailed mass and energy balances for each major component and overall plant
- For components with complex chemistry and/or heat integration schemes, multi-variate regression or other reduced-order models are derived from experimental data and detailed process models
- Approximately 10-20 performance parameters for each component technology

IECM Performance Parameters for Amine Capture System

- Flue gas composition
- Flue gas temp/pressure
- CO₂ removal efficiency
- SO₂ removal efficiency
- NO₂ removal efficiency
- HCl removal efficiency
- Sorbent concentration
- Lean solvent loading
- Acid gas sorbent loss
- Sorbent oxidation loss
- Nominal sorbent makeup
- Ammonia generation

- Cooling water makeup
- Reclaimer chemical reqm't
- Flue gas pressure drop
- Fan efficiency
- Sorbent pumping head
- Pump efficiency
- Regeneration heat
- Equiv. elec. requirement
- CO₂ product pressure
- CO₂ product purity
- Compressor efficiency
- Compression energy

Technology Cost Models

- Direct cost models for each major process area (typically 5-10 areas per technology) based on detailed engineering design studies
- Explicit links to process performance models via key parameters (e.g., flow rate, temp., pressure, etc.)
- Calculate total capital cost, variable O&M costs, fixed O&M costs and annualized cost of electricity
- Approximately 20-30 cost elements per technology

IECM Cost Model Parameters for Amine Capture System

- Process Area Costs (12)
- Process Facilities Cost
- Eng'g. & Home Office
- General Facilities
- Contingency Costs (2)
- Interest during Construction
- Royalty Fees
- Pre-production Costs
- Inventory (startup) Cost
- Total Plant Cost
- Total Capital Reqm't

- Operating Labor
- Maintenance Labor
- Admin./Support Labor
- Maintenance Materials
- Amine Sorbent Cost
- Other Chemicals Cost
- Waste Disposal Cost
- Water Cost
- (Power Cost)*
- CO₂ Transport Cost
- CO₂ Storage Cost

Probabilistic Capability

- Allows users to explicitly model and quantify the effects of uncertainty and/or variability on component and system performance, emissions and cost
- Values for user-selected parameters are specified as a probability distribution function, which is sampled using a selected method and sample size
- Results are displayed as a cumulative distribution function, yielding confidence intervals and probability of different outcomes for selected parameters

Probabilistic Results: Uncertainty in COE

Model Applications

- Process design
- Technology evaluation
- Cost estimation
- R&D management

- Risk analysis
- Environmental compliance
- Marketing studies
- Strategic planning

Recent IECM versions downloaded by: >2200 individuals in >800 organizations in > 50 countries

The IECM Team

- Performance and Cost Models of Advanced CO₂ Capture Systems
 - Advanced liquid solvents (*Peter Versteeg*)
 - Solid sorbent systems (Justin Glier)
 - Membrane capture systems (Haibo Zhai)
 - Advanced oxy-combustion
 - Chemical looping combustion
- Software Development & Dist. (Karen Kietzke)

(Kyle Borgert)

(Hari Mantripragada)

Recent Developments

Since Last Year's Meeting (1)

- Developed reduced order models (ROMs) for several advanced CO₂ capture processes, now implemented in new IECM test versions:
 - Chilled ammonia process (post-comb.)
 - Membrane capture system (post-comb.)
 - Chemical looping system (pre-comb.)
- Additional process models under development:
 - Advanced oxy-combustion system
 - Solid sorbent capture system (post-comb.)
 - Chemical looping system (post-comb.)

Prepared draft technical reports documenting new CO₂ capture process models

Since Last Year's Meeting (2)

- Posted beta version 7.0 for testing
 - >500 downloads to date
- Additional new capabilities in v. 7.1.0, being used for two IECM workshops at this meeting
- Conducted case studies of CCS designs to characterize performance, cost, and uncertainties, including:
 - CCS costs for NGCC plants
 - Effect of proposed CO₂ NSPS for coal plants
 - Effect of EOR credits on capture system cost
 - Comparisons of advanced capture technologies with current amine-based systems

Illustrative Results: Sensitivity Analyses (Deterministic Cases)

Ammonia-Based CO₂ Capture System (Detailed performance model in Aspen Plus)

Ammonia-Based CO₂ Capture System (Reduced Order Model in IECM)

Some of the IECM Parameters for the New Chilled Ammonia Capture System Model

🚟 chilled ammonia ccs														
Configure Plant				Set <u>P</u> arameters				<u>G</u> et Results						
6	Ove <u>r</u> a Plan	Dve <u>r</u> all F <u>u</u> el <u>B</u> ase <u>N</u> Ox Plant F <u>u</u> el Plant Control		TSP <u>S</u> O2 Control Control		01	Mercury	C <u>O</u> 2 Captu	re W <u>a</u> ter By-F Systems M		rod. gmt Stac <u>k</u>			
I		Title		Units		Unc	Value	Calc	Min	Max	Default			
II		1 <u>Absorber</u>												
II		2 Ammonia Concentration		n	wt%			14.40		6.000	30.00	calc		
Ι		3Overall Ammonia Slip4Absorber NH3 Slip5Circulating Water Flow Rate6Gas Phase Pressure Drop7ID Fan Efficiency8Chiller System9Capture System Cooling Duty10Percent Cooling Supply by Chillers11Power Requirement by Chillers12Regenerator13Regen. Heat Requirement14Regen. Steam Heat Content15Heat-to-Electricity Efficiency16I17Pump Efficiency18Percent Solids in Reclaimer Waste			ppmv			10.00		0.0	4000	calc		
Ι				ppmv			3032		0.0	1.000e+4	calc			
				1b/sec			2994		220.5	1.102e+4	calc			
Ι				p	psia			3.000		0.0	6.000	calc		
Ι				%			75.00		50.00	100.0	75.00			
Ι														
Ι				t H2O/t	CO2		64.70		0.0	200.0	calc			
II				%			100.0		0.0	100.0	100.0			
II				kW/ton r	efrig.		0.5500		0.4000	0.8000	0.5500			
II														
Ι				Btu/lb (202		1055		500.0	5000	calc			
				Btu/lb st	team		1373		500.0	1500	calc			
				%			18.70		0.0	40.00	calc			
				%			75.00		50.00	100.0	75.00			
				mer Waste	%			40.00		0.0	100.0	calc		
	I	Proc	ess Type:	CCS Syste	em		•							
<u>1</u> . Config <u>2</u> . Performance <u>3</u> . Capture <u>4</u> . T&S Config <u>5</u> . Retrofit Cost <u>6</u> . Capital Cost <u>7</u> . O&M Cost														

Sensitivity of performance and cost results to selected ammonia system parameters*

*All other parameters held constant

New 2-Stage Membrane System Model in IECM

Sweep-based 2-Stage, 2-Step Membrane System Model

Some IECM Parameters for the New Membrane Capture System Model

<u>C</u> onfigure Plant					Set <u>P</u> arameters					<u>G</u> et Results					
Ove <u>rall</u> Plant F <u>u</u> el <u>B</u> ase <u>N</u> Ox Plant Control			<u>T</u> SP Control Control		Mercury	C <u>O</u> 2 W Capture Sys		ater By-Prod. tems Mgmt		Stac <u>k</u>					
			Title		Units	;	Unc	Value	Calc	Min	Max	Default			
	1	Membrane	Operation T	omp.	do p. I	7		86.00		50.00	150.0	86.00			
	2	Ideal CO2 Permeance (S.T.P.)			gpu		?	1000		500.0	5000	1000			
	3	Ideal CO2/h	V2 Selectivity	stivity (S.T.P.)	ratio)	Π	50.00	2	40.00	75.00	50.00			
	4	Percent of Ideal CO2 Permeance			96			100.0		1.000	100.0	100.0			
	5	Percent of Ideal CO2/N2 Selectivity			%			100.0		1.000	100.0	100.0			
	6														
	7	Permeate-side Pressure		inches Hg			5.906		2.953	29.53	5.906				
	8	Pressure Ratio at Stages 1 and 2			ratio			20.13		0.0	200.0	calc			
	9	Feed-Side Pressure			inches Hg			118.9		29.53	1477	calc			
	10	Stage Cut at 1st Stage			fractio	n		0.2067		0.0	1.000	calc			
	11	Stage Cut at 2nd Stage			fraction			0.4978		0.0	1.000	calc			
	12														
	13												_		
	14	1				_						_			
	15 Feed-side Compressor Efficiency 16 Vacuum Pump Efficiency		Feed-side Compressor Efficiency					85.00		50.00	100.0	85.00	_		
			%			85.00		50.00	100.0	85.00	-				
	17 Expander Efficiency		% • TT20 # CO2			85.00		50.00	100.0	85.00	-				
18 Capture System Cooling Duty					t H2O/t (.02		39.84		0.0	200.0	caic			
Process Type: CCS System															
				_		_	_	,		,		/			
1	, Co	nfig <u>2</u>	. Performanc	e <u>3</u> . Caj	oture 🛛 🖌 4. T&S Config 🖌 <u>5</u> . Retrofit C				it Cost	Cost 🖌 <u>6</u> . Capital Cost 🧹 <u>7</u> . O&M Cost 🍦					

Effect of Membrane Properties on Cost of CO₂ Avoided

Effect of Membrane Facilities Price on Cost of CO₂ Avoided

E.S. Rubin, Carnegie Mellon

New Chemical Looping Capture System Model in IECM

Some IECM Parameters for the New CLC Capture System Model

Configure Plant				Set Parameters				<u>G</u> et Results													
	Ove <u>r</u> Plar	Ove <u>r</u> atl F <u>u</u> el <u>A</u> ir G Plant F <u>u</u> el Separation		<u>i</u> er <u>S</u> ulfur a Removal	C <u>O</u> 2 P Capture <u>P</u>		wer ock	Water B <u>y</u> -Pr Systems Mg		nd. Stac <u>k</u>											
Ш			Title	Units	Unc	Value	Calc	Min	Max	Default											
		1	4 in Reactor																		
	<	2	Air Reactor Temperature	deg. F		2012 🔻		Menu	Menu	2012											
		3 Inlet Excess MeO 4 Excess Air Ratio 5 Superficial Gas Inlet Velocity		moi WeO/moi OC ratio		0.3000		0.0	0.9000 0.300	0.3000											
						3.204		None	None	calc											
				ft/sec		22.97		16.40	32.81	22.97											
	6 Residence Time of Solids		Residence Time of Solids	seconds		5.000		4.000	10.00	5.000											
		7	Fuel Reactor																		
		8	Fuel Reactor Temperature	deg. F		1913		None	None	calc											
		9	Stoichiometric Ratio	mol O2/mol fuel		0.3842		None	None	calc											
		10	Combustion Efficiency	%		99.22		0.0	100.0	calc											
		11	Residence Time of Solids	seconds		60.00		50.00	70.00	60.00											
	12 OC Degradation Rate			%/hr		2.700e-2		0.0	1.000	2.700e-2											
	13																				
		14	Maximum Train Diameter	feet		26.25		0.0	52.49	26.25											
	15 Number of Operating Trains			integer		1		Menu	Menu	Calc											
	16 Number of Spare Trains			integer		• 0		Menu	Menu	0											
		17																			
		18	CLC Power Requirement	% MWg		9.731		0.0	100.0	calc											
Process Type: 1. Chemical Looping																					
ľ		<u>1</u> . C	onfig <u>2</u> . Performance	3. T&S Config	<u>4</u> . F	letrofit Cost	1 5	. Capital C	ost 🖌	<u>6</u> . O&M Cos	<u>1</u> . Config <u>2</u> . Performance <u>3</u> . T&S Config <u>4</u> . Retrofit Cost <u>5</u> . Capital Cost <u>6</u> . O&M Cost										

Effect of Air Reactor Temperature on Net Power Output of IGCC Plant

Illustrative Results: Full Uncertainty Analyses (Probabilistic Cases)

Two Classes of Research Questions

Questions about a particular technology, e.g.:

• What is the likelihood that Technology A will meet a specified target for a key performance and/or cost metric ?

Questions of a comparative nature, e.g.:

• What is the likelihood that Technology A will cost X% less, or perform Y% better, than Technology B in a particular application ?

Examples of IECM Parameter Uncertainty Distributions

Stochastic Simulation

Case Study: SCPC Plants with and w/o CCS (13 uncertain parameters specified)

<u>Question</u>: What's the probability that the added cost of CCS will be no more than \$40/MWh?

E.S. Rubin, Carnegie Mellon

IECM Probabilistic Cost Difference (accounting for all correlated variables)

Probabilistic Difference in LCOE for Ammonia vs. Amine Capture

Future Work This Year

- Workshop session II for IECM users (today)
 - Intermediate/Advanced; 530p 730p
- New IECM release this fall with:
 - Final performance and cost models of chilled ammonia process, post-combustion membrane capture, and chemical looping pre-combustion system
 - Other updates and enhancements (e.g., capability for probabilistic *difference* between two uncertain systems)
 - Technical reports and model documentation
- Continued model development, including:
 - Preliminary models for post-combustion solid sorbents, advanced oxy-combustion systems, and post-comb. CLC

Acknowledgments

- We are grateful for continued support from DOE/NETL and the University Research Alliance and especially thank:
 - Jared Ciferno
 - Robert Romanosky
 - Lynn Brickett
 - Chris Guenther
 - Madhava Syamlal

rubin@cmu.edu